5 Factoring Polynomials

5-1 Factoring Integers

Objective: To factor integers and to find the greatest common factor of several integers.

Vocabulary

Factor To write a number as a product of numbers. For example, $72 = 8 \cdot 9$.

Factor set The set over which a number is factored.

Prime number, or prime An integer greater than 1 that has no positive integral factor other than itself and 1. For example, 19 is prime.

Prime factorization Writing a positive integer as a product of primes. For example, the prime factorization of 30 is $2 \cdot 3 \cdot 5$.

Common factor A factor of two or more integers is called a common factor of the integers. For example, 3 is a common factor of 6 and 9.

Greatest common factor (GCF) The greatest integer that is a factor of two or more given integers.

Example 1	List all the positive factors of 42.			
Solution	$42 = 1 \cdot 42$	Divide 42 by 1, 2, 3, until a pair of factors is repeated.		
	$= 2 \cdot 21$	until a pair of factors is repeated.		
	= 3 · 14			
	= 6 · 7	The positive factors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.		
	(=7.6)	•		

List all of the positive factors of each number. 1,2,3,4,6,9,

1. 10 1,2,5,10 2. 24 1,2,3,4,6,8,12,24 3. 36 12,18,36

27,54

4. 40 1,2,4,5,8,10,20,40

5. 17 **1.17** 6. 54 1,2,3,6,9,18, 8. 42 1,2,3,6,7,14, 21,42

CAUTION Factors come in pairs. For example, since $12 \div 3 = 4$, 3 and 4 are both factors of 12.

7. 29 **1.29**

Example 2	List all pair	s of factors of ea	ich integer: a.	18 b. −18
Solution	a. (1)(18) (2)(9) (3)(6)	(-1)(-18) (-2)(-9) (-3)(-6)	b. (1)(-18) (2)(-9) (3)(-6)	(-1)(18) (-2)(9) (-3)(6)

List all pairs of factors of each integer. Answers given at the back of this Answer Key.

- 9. 11
- **10.** 20

20. -30

- 11. 23
- **12.** 39

- **15.** 75 14, 60
 - 16. 78
- 17. 81
- **13.** 57 **18.** 105

19. 121

21. -63

- **23.** -93
- **22.** -57

DATE

5-1 Factoring Integers (continued)

Example 3 Find the prime factorization of 252.

Solution Try the primes in order as divisors. $252 = 2 \cdot 126$ Divide by each prime as many times as possible before going on to the next prime. Stop when all factors are primes. $= 2^2 \cdot 3^2 \cdot 7$

Find the prime factorization of each number. A calculator may be helpful.

- **24.** 22 **2** · 11 **25.** 30 **2** · **3** · **5** 26. 56 2^3 · **7** 27. 64 2^6 28. 44 $2^2 \cdot 11$ 29. 50 $2 \cdot 5^2$
- 30, 72 23 . 32

NAME

- 31. 84 $2^2 \cdot 3 \cdot 7$
 - **32.** 93
 - 3 · 31

$$5^2 \cdot 11$$
 $2^2 \cdot 97$

$$540 = 2^2 \cdot 3^3 \cdot 5 \qquad 264 = 2^3 \cdot 3 \cdot 11$$

2. Then find the product of smaller powers of each common prime factor.

The common prime factors are 2 and 3. The smaller power of 2 is 2^2 . The smaller power of 3 is 3.

3. The GCF of 540 and 264 is 2² • 3 or 12.

CAUTION If there are no common prime factors, the GCF is 1. For example, since $12 = 2^2 \cdot 3$ and $2^5 = 5^2$, the GCF of 12 and 25 is 1.

Find the GCF of each group of numbers. A calculator may be helpful.

- **36.** 36, 90 **18 40.** 105, 350 **35**
- 37. 28. 70 14
- 41, 126, 144 18
- **38.** 120, 128 **8** 42, 145, 174 29
- **39.** 108, 180 **36** 43, 260, 325 **65**

Mixed Review Exercises

Simplify.

- 1. $\frac{1}{2}(4x + 2) + 3(\frac{1}{3}x 1)$ 2. $(4 + 3)^2$ 49

3. $2^2 + (3 + 1)^2$ 20 6. $2x^3(3y)(5y)$ 30 x^3y^2

4. 2x - 3 - (2x + 4) - 77. $(2x)^3$ 8 x^3

10. $x(x^2-2)-x^2(x+4)$

 $-2x - 4x^2$

74

- 5. $2ab(3a^2)(4b)$ **24a³b²**
- 8. $3n(2n^2-5n)+7n^2$

 $3y^2 + 10y + 8$

- 11. $(3y + 4)(y + 2)^{6n^3} 8n^2$
 - 9. $(-3)^4x^4$ 81 x^4 12. (x - 3)(2x + 3) $2x^2 - 3x - 9$
 - Study Guide, ALGEBRA, Structure and Method, Book 1